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We present the training details of HOI classifiers, extra

information on HICO dataset, and evaluation of 80 object

detectors in this supplementary matrial.

1. Training HOI Classifiers

To study the usage of semanitc knowledge, we first train

a set of basic classifiers. We then combine the output scores

of different basic classifiers to explore the role of different

semantic knowledge (Tab. 7 and Tab. 8 in the paper). All

the trainings are done on the HICO training set.

Basic Classifiers We train three types of basic classifiers

for each feature representation: 1) verb-object (VO) pairs,

2) verbs (V), and 3) objects (O). This gives us 600, 117, and

80 classifiers, respectively. Each classifier is trained using

a linear SVM [1]. We perform 5-fold cross-validation to

determine the paramter C.

Combined Classifiers For each HOI category, we train a

combined classifier by linearly combining the output scores

of a set of basic classifiers:

φj =
∑

i∈S

wiφij (1)

φij denotes the output score of basic classifier i on image

sample j, and wi denotes the learned weight. The set S is

determined by the choice of semantic knowledge. For ex-

ample, we take S = {V,O,VO} for training a V+O+VO

classifier. The weights wi are learned by maximizing the

training AP using a grid search over [0, 1]|S|. Due to the

reuse of training data, applying the output scores from the

trained basic classifers will lead to over-fitting. Instead, we

assign φij using the output scores generated during cross-

validation, i.e. φij is the output score from the model

trained on all the splits not containing sample j.

2. Co-occurences of HOIs

As mentioned in the paper (Sec. 4.4), we exploit the

co-occurences of HOIs to help the recognition of individual

HOIs. For example, “eating a hot dog” often co-occurs with

“holding a hot dog”, but not “riding a bicycle”. Thus a high

confidence in “eating a hot dog” might indicate the pres-

ence of “holding a hot dog”, but not “riding a bicycle”. In

our experiment, we first discover a fix set of co-occuring

HOIs for each individual HOI. We then include the out-

put scores from the basic classifiers of co-occuring HOIs

to train a combined classifier.

To measure the level of co-occurence of two HOIs, we

adopt the normalized co-occurences as in [3]. For HOI class

i, the normalized co-occurence of HOI class j is defined by

sij =
cij

ci
(2)

where cij is the number of images labeled positive for both

HOI class i and j, and ci is the number of images labeled

positive for HOI class i. To apply the knowledge of co-

occurences, we compute the co-occurences of HOIs for

each object category separately using the training annota-

tions (Fig. 7 in the paper). We define HOI class j as a

co-occuring HOI of HOI class i if sij > 0.5 and i 6= j. To

train combined classifiers (VO+coocc & V+O+VO+coocc),

we include only the basic classifiers of co-occuring HOIs

and ignore the non-co-occuring ones.

3. HOI Categories of HICO

The complete list of HICO’s 600 HOI categories, along

with the 117 actions (verb senses) and 80 objects, is shown

in the matrix in Fig. 1. Each row (column) corresponds to

an object (verb). A blue entry indicates the presence of an

HOI. Fig. 2 shows the number of positives for all 600 HOI

categories. The long tail distribution highlights the pres-

ence of dominant and rare HOIs. More examples of HICO

images and HOI annotations are given in Fig. 3

4. Training R-CNN Object Detectors

Our Human-Object CNN takes in detection heatmaps of

80 object categories. To obtain the detectors for 80 ob-

jects, we first take the off-the-shelf R-CNN detectors [2]
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Figure 2: Number of positives per HOI category. The long tail distribution highlights the presence of dominant and rare HOI

categories.

truck tf light hydrant sp sign pk meter bench elephant bear zebra giraffe backpack umbrella handbag tie suitcase

R-CNN fc7 22.9 13.2 56.0 61.4 23.2 10.8 48.7 50.3 56.9 56.7 9.7 19.1 1.9 16.1 13.4

frisbee skis snowbd sp ball kite bb bat bb glove skatebd surfbd racket wn glass cup fork knife spoon

R-CNN fc7 23.7 11.6 11.2 17.2 14.7 13.4 18.4 19.6 14.6 28.2 13.3 15.0 9.4 9.2 9.6

bowl banana apple sandwich orange broccoli carrot hot dog pizza donut cake bed toilet laptop mouse

R-CNN fc7 23.4 14.6 13.1 24.6 20.3 16.8 9.4 24.4 41.8 17.5 11.5 27.4 39.4 35.1 23.6

remote keyboard phone microwave oven toaster sink fridg book clock vase scissors td bear hr drier tbrush

R-CNN fc7 8.1 21.5 13.4 27.3 17.5 11.1 15.1 24.4 1.0 48.0 17.6 15.8 36.3 0.3 0.6

Table 1: Detection average precision (%) of 60 non-PASCAL VOC object categories on MS-COCO validation set.

for 20 PASCAL VOC object classes (a subset of 80 MS-

COCO object classes). For the remaining 60 object classes,

we train 60 R-CNN detectors using the training set of MS-

COCO. We use the Alex’s Net pre-trained on ILSVRC 2012

without fine-tuning. All the features are obtained from the

output of layer fc7. To validate our trained models, we eval-

uate the 60 trained object detectors using the MS-COCO

validation set. The detection average precisions (AP) are

reported in Tab. 1. We see the APs are generally higher

for larger objects such as elephants and trucks, while the

APs are lower for smaller objects such as forks and remotes.

Overall, more than half of the object classes have AP below

20%, showing the limitation of using object detection as a

mid-level representation for HOI recognition.
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Figure 3: Samples of images and HOI annotations in the HICO dataset.


